Optimization of Marine Spatial Planning Policies through Mapping the Potential of the Maritime Sector in Central Java based on K-Means Analysis

  • Firman Emmanuel Declarantius Parulian Politeknik Statistika STIS
  • Ni Putu Esti Utami Barsua
  • Ikhlasul A'mal
Keywords: Blue economy, Central Java, K-means, MSP

Abstract

This study aims to map regencies/cities in Central Java Province based on the achievement of blue economy indicators and the potential of each region, and identify the characteristics of each cluster resulting from the grouping. Using the K-means method, this research analyzes 25 variables from six maritime sectors, with data obtained from BPS, Podes, the Ministry of Marine Affairs and Fisheries, the Energy and Mineral Resources Office, and the Port Directorate. The mapping results show that the regencies/cities are divided into two clusters. However, not all coastal regencies/cities have high blue economy achievements, indicating that there is untapped potential in coastal areas. Therefore, the proposed policy recommendation is CERDAS MSP (Collaborative Engagement for Resilient Development and Advanced Solutions in Marine Spatial Planning), which involves cross-sectoral collaboration, strengthening MSP data, and utilizing technology through Focus Group Discussions at the provincial and regency/city levels to promote more inclusive and sustainable maritime management.

References

Alya Putri, A.A. and Rahmah, S.A. 2024. Implementasi Data Mining Dengan Algoritma K-Means Clustering Untuk Analisis Bisnis Pada Perusahaan Asuransi. Djtechno: Jurnal Teknologi Informasi 5(1), pp. 139–152. doi: 10.46576/djtechno.v5i1.4537.

Amelia, S., Rustiadi, E., Barus, B. and Juanda, B. 2022. Mapping the Diversity of Regional Characteristics Towards Sustainable Economic Strategic Area Development: A Case Study of West-East Corridor of West Sumatra Province. International Journal of Sustainable Development and Planning 17(1), pp. 185–193. doi: 10.18280/ijsdp.170118.

BAPPENAS. 2023. Indonesia Blue Economy Roadmap. (2), p. 3145374.

Derek S Young. 2017. Regression Methods Handbook of. Available at: https://www.taylorfrancis.com/books/mono/10.1201/9781315154701/handbook-regression-methods-derek-scott-young.

Fithor, A., Prayitno, S.B., Purwanti, F. and Indarjo, A. 2021. Overlapping coastal spatial laws in semarang, indonesia. AACL Bioflux 14(5), pp. 2969–2975.

Ghosal, A., Nandy, A., Das, A.K., Goswami, S. and Panday, M. 2020. A Short Review on Different Clustering Techniques and Their Applications. Springer Singapore. Available at: http://dx.doi.org/10.1007/978-981-13-7403-6_9.

HELCOM-VASAB. 2021. Regional Maritime Spatial Planning Roadmap 2021-2030. (October), pp. 1–9. Available at: www.vasab.org.

IOC-UNESCO. 2022. Updated Joint Roadmap to accelerate Marine/Maritime Spatial Planning processes worldwide – MSProadmap (2022–2027). (112).

KKP. 2024. Laporan Kinerja Kementerian Kelautan dan Perikanan Tahun 2024. Kementerian Kelautan dan Perikanan 1, p. 2080. Available at: https://kkp.go.id/an-component/media/upload-gambar-pendukung/kkp/LAPORAN/Laporan Kinerja KKP/2022/20230316_Laporan Kinerja KKP 2022.pdf.

Koesnadi, G.L., Handayani, K.T., Marwanda, N.D., Qomaryah, P.M., Amelia, D., Mardianto, M.F.F. and Ana, E. 2023. Pengelompokkan Provinsi Berdasarkan Prioritas Potensi Sektor Maritim Indikator Blue Economy Menggunakan Analisis Cluster Average Linkage. Jurnal Sains Matematika dan Statistika 9(1), p. 65. doi: 10.24014/jsms.v9i1.20291.

Lee, K.H., Noh, J. and Khim, J.S. 2020. The Blue Economy and the United Nations’ sustainable development goals: Challenges and opportunities. Environment International 137(January), p. 105528. Available at: https://doi.org/10.1016/j.envint.2020.105528.

Lenama, N., A. Kleden, M. and G. Pasangka, I. 2023. K-Means Clustering Analysis pada Pengelompokan Kabupaten/Kota di Provinsi Nusa Tenggara Timur Berdasarkan Indikator Pendidikan. Jurnal Ilmiah Wahana Pendidikan 9(23), pp. 656–664.

Makmur, K. et al. 2022. Prospek Ekonomi Biru bagi Pemulihan Ekonomi Indonesia.

Mubarak, H. and Kholijah, G. 2023. Analisis Klaster Dalam Pengelompokan Kabupaten/Kota Di Provinsi Jambi Berdasarkan Penyakit Menular Menggunakan Metode K-Means. Jurnal Statistika dan Komputasi 2(1), pp. 20–30. doi: 10.32665/statkom.v2i1.1597.

Murdiniyati, A.D. and Joesidawati, M.I. 2024. Deteksi Sebaran Terumbu Karang Menggunakan Citra Sentinel-2 Di Kepulauan Karimunjawa, Jawa Tengah. Jurnal Ruaya : Jurnal Penelitian dan Kajian Ilmu Perikanan dan Kelautan 12(2), pp. 161–166. doi: 10.29406/jr.v12i2.5926.

Muttaqin, M.F.J. 2022. Cluster Analysis Using K-Means Method to Classify Sumatera Regency and City Based on Human Development Index Indicator. Seminar Nasional Official Statistics 2022(1), pp. 967–976. doi: 10.34123/semnasoffstat.v2022i1.1299.

Narwal, S., Kaur, M., Yadav, D.S. and Bast, F. 2024. Sustainable blue economy: Opportunities and challenges. Journal of Biosciences 49(1). doi: 10.1007/s12038-023-00375-x.

Noviandy, T.R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N.R., Hilal, I.S. and Idroes, G.M. 2024. Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis. Leuser Journal of Environmental Studies 2(1), pp. 41–51. doi: 10.60084/ljes.v2i1.181.

Pramana, S., Busaina, L. and Panuntun, S.B. 2023. Time-Series Clustering of the Regencies Hotel Room Occupancy Rate in Indonesia after the COVID-19 Pandemic. Proceedings of The International Conference on Data Science and Official Statistics 2023(1), pp. 344–353. doi: 10.34123/icdsos.v2023i1.387.

Qi, X. 2024. Mapping the national blue economic system space: A case study of China. Marine Policy 160(November 2023). doi: 10.1016/j.marpol.2023.105959.

Shrestha, N. 2020. Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics 8(2), pp. 39–42. doi: 10.12691/ajams-8-2-1.

Suraya, G.R. and Wijayanto, A.W. 2022. Comparison of Hierarchical Clustering, K-Means, K-Medoids, and Fuzzy C-Means Methods in Grouping Provinces in Indonesia according to the Special Index for Handling Stunting. Indonesian Journal of Statistics and Its Applications 6(2), pp. 180–201. doi: 10.29244/ijsa.v6i2p180-201.

Talib, N.L., Utomo, A., Barnett, J. and Adhuri, D.S. 2022. Three centuries of marine governance in Indonesia: Path dependence impedes sustainability. Marine Policy 143(October 2021). doi: 10.1016/j.marpol.2022.105171.

UNESCO-IOC/European Commission. 2021. MSPglobal International Guide on Marine/Maritime Spatial Planning. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000379196.

Voyer, M., Farmery, A.K., Kajlich, L., Vachette, A. and Quirk, G. 2020. Assessing policy coherence and coordination in the sustainable development of a Blue Economy. A case study from Timor Leste. Ocean and Coastal Management 192(March), p. 105187. Available at: https://doi.org/10.1016/j.ocecoaman.2020.105187.

Wen, W., Samudera, K., Adrianto, L., Johnson, G.L., Brancato, M.S. and White, A. 2022. Towards Marine Spatial Planning Implementation in Indonesia: Progress and Hindering Factors. Coastal Management 50(6), pp. 469–489. Available at: https://doi.org/10.1080/08920753.2022.2126262.

Published
2025-11-05
How to Cite
Declarantius Parulian, F. E., Barsua, N. P. E. U., & A’mal, I. (2025). Optimization of Marine Spatial Planning Policies through Mapping the Potential of the Maritime Sector in Central Java based on K-Means Analysis. Jurnal Litbang Provinsi Jawa Tengah, 23(1), 55 -. https://doi.org/10.36762/jurnaljateng.v23i1.1275